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An Analysis of Heterodyne Pulse-Position
Modulation Communication Systems

Over Unguided, Turbulent
Optical Channels

K. Kiasaleh1 and T.-Y. Yan1

This article investigates the performance of the heterodyne detection scheme for
optical pulse-position modulation (PPM) communications channels when nonideal
laser transmitters are employed. Two aspects of this channel will be considered.
First, the limitations of unguided, turbulent channels in accommodating coherent
laser communications are addressed. This is followed by an investigation of the per-
formance of a heterodyne optical PPM communication system. It is demonstrated
here that, due to the presence of laser phase noise, noncoherent (or asynchronous)
RF detection is a preferred mode of detection and that the overall performance is
severely hampered in the presence of phase noise. The performance of the proposed
receiver is compared with that of the avalanche photodiode detector (APD)-based
direct-detection receiver. It is shown here that the APD-based detector outperforms
its heterodyne counterpart across a wide range of background radiation levels.

I. Introduction

A preferred means of modulation for optical direct-detection channels is M -ary pulse-position mod-
ulation (PPM). In this article, we will examine the feasibility (from an error-rate standpoint) of using
heterodyne detection when the modulation scheme is a 256-ary PPM. We consider the case when the
local laser oscillator is strong enough to allow a shot-noise-limited scenario at the receiver and when
phase noise due to laser instability is non-negligible. In this article, we make a distinction between “co-
herent” or “synchronous” detection and optically coherent detection. The former refers to a scenario
wherein phase coherency can be established at the receiver (this may refer to the case when coherent
detection is employed after optical detection), whereas the latter refers to a scenario wherein optical
heterodyne or homodyne has been employed to convert the optical signal into its RF or baseband coun-
terpart. In this case, phase coherency may be established at the receiver. For instance, it is quite possible
that one can use optically coherent (heterodyne) detection for converting an M -ary frequency shift-keying
(FSK)-modulated optical signal into its RF counterpart and use a noncoherent detection mechanism to
recover the data symbol.
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The other key factor in the design of unguided coherent optical channels is the atmospheric effect. In
the following, we first describe the impact of atmosphere on the characteristics of a coherent optical beam.
We follow this with a study of the performance of a heterodyne receiver for the detection of coherent
PPM pulses.

II. Channel Effects (Weak Turbulence)

A turbulent channel has a profound impact on the quality of an optical beam. In the following,
we consider a “weak” turbulent scenario wherein coherent communication can be considered. For the
scenario when turbulence is considered to be strong, rather predictably the performance of the channel
is substantially compromised, and, hence, a reliable link may not be established.

We begin by considering the spatial coherence function of an optical field. Let Γ(r1, r2) denote the
mutual coherence function (MCF) of the field in the turbulent medium. That is,

Γ(r1, r2) = E
{
f(r1)f(r2)

}
where E{} denotes the expected value of the enclosed and f(r) denotes the electric field at r (a point in
space is identified by a vector). In the case of weak turbulence, and using Tatarski’s model [1], one can
demonstrate that [1]

Γ(r1, r2) = A2 exp

(
−

(
ρ

ρ0

)5/3
)

where ρ0 = [1.45k2
∫ L

0
C2

n(x)dx]−3/5 for plane waves, ρ0 = [1.45k2
∫ L

0
C2

n(x/L)dx]−3/5 for spherical waves,
and ρ = r1 − r2. Furthermore, A denotes the amplitude of the electric field; C2

n(x) is the index of the
refraction structure constant; L is the length of the turbulent medium; and k = (2π)/λ, with λ denoting
the wavelength of the laser. For deep-space applications, one can assume that the wave impinging upon the
receiver is a plane wave, and, hence, ρ0 = [1.45k2

∫ L

0
C2

n(x)dx]−3/5 must be used in the above equation.
This scenario is encountered in the downlink of a deep-space channel. Quite often, r0 = ρ03.445/3

[i.e., Γ(r1, r2) = A2 exp(−3.44(ρ/r0)5/3)] is used in signal-to-noise-ratio (SNR) calculation of optical
heterodyne systems. This issue will be discussed later. This formulation allows for the computation of
the MCF when the index of refraction structure constant is known or can be approximated. For instance,
when the downlink channel (spacecraft to ground) is considered, the field may be considered as a plane
wave. In that case, it has been shown that [1]

r0 = 0.05λ6/5 cos3/5(φ)
[
Γ

(
2
3

)
Γ

(
2
3

H

h0

)]3/5

where H and h0 denote the height of the receiver and the height of the turbulent atmosphere, respectively,
and Γ(α) and Γ(α, β) denote gamma and incomplete gamma functions, respectively. To arrive at the
above, we have assumed that the index of refraction structure constant follows the Hufnagel and Stanley
models [1].

For the uplink (i.e., from the ground to the deep-space spacecraft), however, one is required to consider
a spherical wave since the turbulence is in the vicinity of the transmitter.
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III. Receiver SNR

The electric field at the aperture of a heterodyne optical receiver may be described as

fa(r, t) = ase
jωct+φfa(r)

where as and φ denote the amplitude and phase, respectively, of the modulated optical field and fa(r, t)
denotes the time-dependent electric field at the aperture of the receiver in the absence of background
noise. For most practical cases of interest, background noise is present at the receiver and, hence, the
effect of such a noise process must be included in the analysis. The electric field then is processed by the
receiver optics, which consequently produces the following field at the detector area prior to heterodyning:

fd(r, t) = ase
jωctfd(r) + b(t)ejωctfb(r)

where b(t) and fb(r) are the temporal and spatial components, respectively, of the background radiation at
the detector area and fd(r) is the spatial component of the field at the detector area prior to heterodyning.
Prior to detection, the optical field is mixed with the local laser field. Let

fL(r, t) = aLej(ωc+ωIF )tfL(r)

denote the local laser field in the detector field. It is assumed here that the center frequency of the local
laser is at a frequency that is different from the received field. The difference frequency is known as the
IF frequency, ωIF . Assuming that the local laser possesses a power level substantially greater than those
of the received signal and background noise and that the photodetector has a unity gain, the current at
the output of the photodetector may be described as [1]

id(t) ≈ eαa2
L

∫
Ad

|fL(r)|2 dr + 2eαaLas

[∫
Ad

fd(r)f∗L(r)dr

]
cos (ωIF t + φ)

+ 2eαaLb(t)
[∫

Ad

fb(r)f∗L(r)dr

]
cos(ωIF t) + nsn(t) + nc(t) (1)

where e is the charge of an electron, α = η/(hfc), with h, η, and fc denoting Planck’s constant, the
quantum efficiency of the detector, and the frequency of the laser, respectively; nsn(t) denotes the shot-
noise process at the output of the detector; nc(t) is the circuit noise due to the electronic processing that
follows the optical detection; and Ac denotes the detector area. The circuit noise typically is suppressed
by the strong local laser while the dc term at the output of the photodetector is removed by the bandpass
filter that follows the photodetector. The shot-noise process has a power-spectrum level (one-sided) of

Nsn = e2αa2
L

∫
Ad

|fL(r)|2dr

(this is obtained assuming that the local laser field is far stronger than any other field present and, hence,
the effective power of the combined field is due to the local laser).

At this stage, assuming that the local field is matched to the capture field at the detector area [i.e.,
fL(r) = fs(r)], one can define
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Ar =
∫

Ad

|fd(r)|2dr =
∫

Ad

|fL(r)|2dr

Also, let

PL = a2
LAr

denote the portion of the local laser power that is collected by the detector. Then,

Nsn = αe2PL

Let us also define the effective area of the receiver (or the mean-square value of the spatial integral) as

Ac = E
{
|Il,d|2

}
where

Il,d =
∫

Ad

f∗L(r)fd(r)dr

Due to the presence of atmospheric turbulence, we assume that the received field is random with its
spatial coherence function satisfying the Rytov model described above. We also note that, since the local
field is matched to that of the incoming signal, the contribution of background noise in the spatial domain
is limited to the spatial domain of the source. That is, not all of the spatial modes of the background field
are collected by the detector. Consequently, the power spectrum of the background-noise contribution at
the output of the detector may be expressed as 2e2α2PLN0b, where N0b is the one-sided power spectrum
of the random process b(t). To arrive at this result, we have assumed that the background field is spatially
incoherent, i.e., Γb(r1, r2) = E

{
fb(r1)f∗b (r2)

}
= δ(r1 − r2) (see the term in Eq. (1) that accounts for the

background-noise contribution).

Given the above formulation, the SNR of a heterodyne receiver may now be expressed as

SNR =
4e2α2 a2

s

2
PLAc

e2 (αPL + 2α2PLN0b + N0c) 2Bn

where N0c denotes the two-sided power-spectrum level of the circuit noise and Bn is the IF filter-noise
bandwidth (one-sided).

Considering that the power of the local oscillator typically is much larger than other noise processes
at the receiver, the SNR equation may be further approximated by

SNR ≈ αa2
sAc

(1 + 2αN0b)Bn
(2)

The remaining task is to obtain Ac. This parameter may be interpreted as the effective aperture of the
receiver (which is smaller than the actual aperture of the receiver due to turbulence). This parameter
may be related to the MCF and the receiver optical transfer function (OTF). To elaborate,
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Ac =
∫

Ad

∫
Ad

Γd(r1, r2)f∗L(r1)fL(rs)dr1dr2

with

Γd(r1, r2) = E
{
fd(r1)f∗d (r2)

}
denoting the MCF of the received optical field at the detector area prior to mixing with the local laser.
It is important to note that, when the received field remains coherent over the aperture area, the MCF
at the detector area will satisfy Γd(r1, r2) = δ(r1 − r2). This is due to the fact that the MCFs in the
detector and aperture planes are related via a two-dimensional Fourier transform relationship, and, hence,
a constant MCF in the aperture (totally coherent field) will yield a delta function MCF in the detector
area. Given this argument, Ac =

∫
Ad
|fL(r)|2dr − Ar. This implies that the “coherence area” of the

field (the area on the detector available for collecting coherent power) will be identical to the effective
detector area in the absence of turbulence. In the event that atmospheric turbulence is present, Ac < Ar,
which implies that the effect of turbulence is to reduce the coherence area of the signal. This in turn
reduces the effective power and, consequently, the SNR of the heterodyne detection. Considering that
the relationship between the fields at the aperture and detector areas is that of the Fourier transform
pair, assuming that the local laser field is matched to the received field at the detector area, and using
the Parseval identity, we have

Ac = E

∣∣∣∣∫ ∞
−∞

fa(r)P (r)dr

∣∣∣∣2
or

Ac =
∫ ∞
−∞

∫ ∞
−∞

Γa(r1, r2)P (r1)P (r2)dr1dr2

where P (r) denotes the pupil function of the aperture. Making the change of variables r1 = R + (ρ/2)
and r2 = R− (ρ/2), and realizing that

κ(ρ) =
∫ ∞
−∞

P
(
R +

ρ

2

)
P

(
R−

ρ

2

)
dR

is the optical transfer function (OTF) of the receiver aperture, we have

Ac =
∫ ∞
−∞

Γa(ρ)κ(ρ)dρ

where it is assumed that the MCF in the above equation is a function of r1− r2 = ρ. Note that the OTF
is merely the autocorrelation function of the pupil function. To go any further, an aperture type must be
specified. If one assumes a circular aperture with diameter D, then it is rather easy to observe that the
OTF is the common area of two overlapping circles whose centers are a distance of |ρ| apart. Note that
the OTF is only a function of the magnitude of the vector ρ. A similar observation is true for a turbulent
field whose MCF obeys the Rytov model. That is, Γa(ρ) = Γa(|ρ|). Hence (assuming ρ = (r, θ) is in the
polar coordinate system),
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Ac =
∫ π

−π

∫ D

0

Γa(r)κ(r)rdrdθ = 2π

∫ D

0

Γa(r)κ(r)rdr

The remaining task is to substitute for the OTF and MCF in the above equation. The OTF of a
circular aperture has been previously obtained (see [1]) and can be shown to be

κ(r) =


2
π

[
cos−1

( r

D

)
− r

D

√
1−

( r

D

)2
]

; 0 ≤ r ≤ D

0; otherwise

Assuming that the background radiation and the circuit noise are rather negligible, the SNR of the
receiver may be approximated as

SNR ≈ αa2
sAc

Bn
=

4αa2
s

Bn

∫ D

0

rΓa(r)

[
cos−1

( r

D

)
− r

D

√
1−

( r

D

)2
]

dr

=
4αa2

s

Bn

∫ D

0

r exp

(
−3.44

(
r

r0

)5/3
) [

cos−1
( r

D

)
− r

D

√
1−

( r

D

)2
]

dr

=
πr2

0ηa2
s

4hfcBn
×

{
16β2

π

∫ 1

0

u exp
(
−3.44(βu)5/3

) [
cos−1(u)− u

√
1− u2

]
du

}
(3)

where β = D/r0. As can be seen, the SNR at the receiver is a function of β, the ratio of the receiver
diameter and the coherence radius of the atmosphere. It has been shown [2] that, as β is increased, the
SNR can be improved. However, as one continues to increase β, the SNR approaches a bound, underscor-
ing the fact that any further increase in the aperture diameter to combat the impact of turbulence will
not result in an improved SNR. Assuming that β > 10 can be used, then the integral inside the brackets
in Eq. (3), which is always less than 1, approaches unity. Hence,

SNR ≤ πr2
0a

2
sη

4hfcBn

Note that the numerator of the equation may be interpreted as an effective receiving area that is identical
to the area of the coherence region of the received field. Also, as one considers background noise and
circuit noise, the above upper bound is reduced.

IV. PPM Modulation

In the analysis that follows, we are interested in PPM modulation, which is suitable for energy-efficient
deep-space optical communication. In this form of modulation, a single pulse is placed in one of the slots
in the symbol interval. Given that the background radiation is present, one can describe the intensity of
the received optical M -ary PPM signal as

λr(t) = λb + λs

∞∑
i=0

P (t− CiTc − iTs)

6



where λb and λs are the background and signal intensities, respectively, in photons/s; P (t) is the
pulse shape describing the laser pulse; Ci is the PPM symbol taking on an integer value from the set
{0, 1, · · · , M−1} with equal probability (M is the PPM symbol alphabet); Ts is the PPM symbol duration
in seconds; and Tc = Ts/M is the PPM slot duration in seconds. In this analysis, it is assumed that
the pulse shape, P (t), is Gaussian in shape and is confined to a slot duration. In direct-detection-type
receivers, the optical signal intensity, such as the one shown above, will determine the statistics of the
number of photons in a given symbol interval.

In the analysis that follows, however, we are interested in assessing the performance of the PPM
modulation scheme when the received signal is mixed with a local laser prior to photodetection. A major
difference between the analysis presented here and that in the literature is the use of a pulsed laser for
heterodyne detection. Traditionally, coherent detection is associated with continuous-wave (CW) lasers
whose phase instabilities are well approximated using a Lorentzian distribution. In the analysis presented
here, we consider heterodyne detection using high-power, pulsed lasers, whose phase stability, to the best
of the authors’ knowledge, has never been the subject of any extensive study. Naturally, such lasers are
used for noncoherent (or direct-detection) applications, and, thus, the phase stability is of little concern.
For the problem at hand, however, the statistics of the phase of the laser are of significant importance
to the detection process. Hence, in the absence of an analytical model, we carry out our analysis making
a number of assumptions. First, we assume that slot and symbol synchronization have been established.
Second, it is assumed that the local laser is phase locked with the incoming signal to the extent that
the phase difference between the phase of the incoming signal and that of the local laser is assumed to
be constant over at least one PPM slot. However, we make no assumption with regard to the phase
difference between the two signals from symbol to symbol. This is mainly due to the fact that the
phase of the optical signal generated by high-power, pulsed lasers is quite unpredictable and may vary
substantially from pulse to pulse (which in this case implies symbol to symbol). However, given that
the slot interval typically is quite small, one can assume negligible drift in laser phase over a given PPM
slot. This assumption has not been substantiated experimentally, although some recent experiments have
shown promising results. This assumption, nonetheless, is quite reasonable assuming that, for high-speed,
deep-space exploration, one requires large PPM alphabet sizes and small PPM symbol durations. As this
trend continues, one can expect a fairly small PPM slot duration for future systems.

Finally, we assume that the local laser power is substantially greater than those of the incoming signal
and the thermal noise due to electronic devices that are present at the receiver. Furthermore, we assume
a shot-noise-limited detection due to the presence of a strong local laser.

Given the above assumptions, we can proceed with the problem formulation. A notation similar to that
of the preceding section is used here. However, the notation is modified to account for the pulsed nature
of the optical signal at the transmitter as well as at the receiver. To that end, let the field generated by
the local laser over the kth slot of the nth PPM symbol be

fLO(r, t) = aLej(ωLOt+φLO(t))P (t− kTc − nTs)fLO(r)

where aL, ωLO, and φLO are the peak field amplitude, the frequency of laser in Hz, and the phase of
the laser due to laser instabilities, respectively, and fLO(r) denotes the spatial component of the local
field. Note that the laser phase noise can severely hamper the performance of a phase-modulated system.
Furthermore, P (t) denotes a nonreturn-to-zero (NRZ) pulse of duration Tc. For the analysis that follows,
however, we are concerned with the performance of PPM modulation, which can be classified as an
M -ary orthogonal signaling. Such signaling schemes are not as severely impacted by phase instability as
their phase-modulation counterparts. The received signal field, similar to that presented in the preceding
section, may now be represented as
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fd(r, t) = ase
j(ωst+φs(t))

∞∑
i=−∞

P (t− CiTc − iTs)fd(r) + b(t)ejωstfb(r)

Given that the local laser power is large and that a shot-noise-limited operation (i.e., the receiver ther-
mal noise can be ignored) is achievable here, the current at the photodetector load resistance can be
approximated as

id(t) ≈ 2eαasIl,d

√
PL cos(ωIF t + φe(t))

∞∑
i=−∞

P (t− CiTc − iTs) + nhet(t)

where nhet(t) denotes a zero-mean, white Gaussian noise process that accounts for shot noise and back-
ground radiation with a one-sided power spectrum

Nhet = αe2PL(1 + 2αN0b)

Given the above formulation, one can suggest an optimal receiver in the absence of phase noise. It is
imperative to note that the phase noise is a major impairment, and, thus, must be taken into account in
assessing the performance of the receiver. However, to this date, an optimal receiver for the detection of
phase-noisy optical receivers has not been found. This complication is due mainly to the complexity of
the statistics of the phase-noise process.

For the sake of simplicity and without loss of generality, we limit our analysis to the 0th (j = 0)
transmitted symbol. In the absence of phase noise and turbulence, an optimal receiver will yield the
following decision variables [3]:

Γq =
∫ qTc+τ̂

(q−1)Tc+τ̂

id(t) cos(ωIF t)dt; q = 1, 2, · · · , M − 1

and the decision rule will be

C0 = arg max
q
{Γq; q = 1, 2, · · · , M − 1}

Obviously, the above decision rule relies on a perfect knowledge of the IF signal phase. This further
implies that one must establish phase synchronization (coherent or synchronous IF detection) at this
stage. However, as noted earlier, the phase of the laser may vary from pulse to pulse, making it quite
difficult, if not impossible, to successfully track the phase of the IF signal using a conventional tracking
loop. For these reasons, we believe that a realistic approach here is to perform a noncoherent detection
(in IF) of the signal shown above. That is,

C0 = arg max
s

{
ΓNC

s ; s = 1, 2, · · · , M − 1
}

where

ΓNC
s =

√
Γ2

s,I + Γ2
s,Q
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with Γs,I =
∫ sTc+τ̂

(s−1)Tc+τ̂
id(t) cos(ωIF t)dt and Γs,Q =

∫ sTc+τ̂

(s−1)Tc+τ̂
id(t) sin(ωIF t)dt. This detection mecha-

nism is optimal when turbulence is absent and the phase of the IF signal is assumed to be constant and
uniformly distributed on [−π, π]. In reality, the phase of the IF signal will be time varying and nonuniform
in distribution. Nonetheless, as the duration of the laser pulse is reduced in time, the phase drift in both
transmitter and receiver lasers can be considered to be negligible over a PPM slot. It is important to note
that a receiver implementation that follows the above decision rule may be classified as an asynchronous
receiver without post-detection processing (see [4, pp. 276–284]). Finally, it is imperative to note that
the presence of turbulence causes a time-dependent SNR. Hence, the decision rule described above leads
to a sub-optimal architecture in the presence of time-dependent turbulence. For the problem at hand, we
assume that the PPM frames are repeated at a rate of 50 kHz. That is, the PPM pulses are spaced in time
by 20 µs. Since the atmospheric conditions change at a much slower rate (5 to 50 Hz), one may assume
that the SNR (or more specifically, the field amplitude) remains constant for many PPM symbols. This
further implies that one may obtain the performance of the above receiver architecture by conditioning
the performance on the statistics of the amplitude. The performance then may be obtained by averaging
the resulting expression over the random variations of the amplitude.

The performance of the above decision rule can readily be obtained [3], assuming that the laser pulses
are confined to the PPM slot duration and that the slot and symbol synchronization subsystems have
yielded a negligible timing error. Furthermore, to arrive at the desired expression for symbol and bit-error
rates, one must condition the performance on the amplitude fluctuations due to turbulence. Considering
the above approximations, and assuming that the Lth symbol has been transmitted over the PPM symbol
duration of interest, we have

Γs,I =

 eαasIl,d

√
PL

∫ LTc+τ̂

(L−1)Tc+τ̂

cos(φe(s))ds + NI ; s = L

NI ; otherwise

and

Γs,Q =

 eαasIl,d

√
PL

∫ LTc+τ̂

(L−1)Tc+τ̂

sin(φe(s))ds + NQ; s = L

NQ; otherwise

where NI and NQ are a pair of zero mean, independent Gaussian random variables with identical variances
given by

σ2
sn = αe2PL

Tc

2
(1 + 2αN0b)

Note that the impact of phase noise is the reduction in SNR. To go any further, one must consider the
statistics of the phase noise in the above equation. As noted earlier, in this analysis, we consider the case
when the laser phase noise may be considered to be “slow varying” or constant over a PPM slot duration.
Given this approximation, then

Γs,I =
{

eαasIl,d

√
PL cos(φe)Tc + NI ; s = L

NI ; otherwise

and
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Γs,Q =
{

eαasIl,d

√
PL sin(φe)Tc + NQ; s = L

NQ; otherwise

This, in turn, leads to

ΓNC
s =


√(

eαas|Il,d|
√

PL sin(φe + θl,d)Tc + NI

)2 +
(
eαas|Il,d|

√
PL cos(φe + θl,d)Tc + NQ

)2; s = L√
N2

I + N2
Q; otherwise

where θl,d is the phase of Il,d. If one assumes that φe is a uniformly distributed random variable2 (this
leads to a worst-case scenario), the probability density function of ΓNC

s when conditioned on Il,d is given
by

fΓs|Il,d
(x|Il,d) =


x

σ2
sn

exp
(
−x2 + A2

2σ2
sn

)
I0

(
Ax

σ2
sn

)
U(x); s = L

x

σ2
sn

exp
(
− x2

2σ2
sn

)
U(x); otherwise

where A = eαas|Il,d|
√

PLTc and I0() is the 0th-order modified Bessel function of the first kind.

In the absence of timing error and when the pulse shape is confined to a chip duration, PPM signaling
constitutes an orthogonal form of signaling at the receiver. Given this assumption, we have

Pb(e|Il,d) =
M/2

(M − 1)

m−1∑
n=1

(−1)n+1

(
M − 1

n

)
1

n + 1
exp

[
− n

(n + 1)
SNR(Il,d)

]

where

SNR(Il,d) =

(
eαas|Il,d|

√
PLTc

)2

2αe2PL
Tc

2
(1 + 2αN0b)

=
αa2

s|Il,d|2Tc

1 + 2αN0b

and Pb(e|Il,d) denotes the system bit-error rate when conditioned on amplitude variations due to turbu-
lence. Note that this definition of the SNR is identical to Eq. (2) when the one-sided bandwidth of the IF
filter is considered to be Bn = 1/Tc (note that an integrate-and-dump (I&D) filter possesses a one-sided
bandwidth of 1/Tc).

For large M , the above expression is difficult to compute, and, hence, one can exploit the union bound
to arrive at an upper bound on performance. That is, the overall bit-error rate may be upper bounded
as [3]

Pb(e|Il,d) ≤
M

2
Pb,2(e|Il,d) (4)

2 This assumption is only necessary for the case of s = L.
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where Pb,2(e|Il,d) denotes the performance of a binary PPM receiver operating under a set of conditions
similar to that of its M -ary counterpart. This probability is given by

Pb,2(e|Il,d) =
1
2

exp
(
−SNR(Il,d)

2

)

Finally, to arrive at the average error rate, we resort to an approximation. Namely,

Pb,2(e) ≈
1
2

exp
(
−SNR

2

)

where SNR = E{SNR(Il,d)} and is given by Eq. (3). Similarly, the error rate also may be approximated
as

Pb(e) ≈
M/2

(M − 1)

M−1∑
n=1

(−1)n+1

(
M − 1

n

)
1

n + 1
exp

[
− n

(n + 1)
SNR

]
(5)

To arrive at the above approximations, we have used E{g(x)} ≈ g(E(x)). This approximation can be
used when g(x) is a well-behaved function in the vicinity of E(x) and var(x) can be considered to be
negligible as compared with the mean value. The first assumption is easily satisfied since the conditional
error rates that are given above take on an exponential form. The second assumption is somewhat more
difficult to satisfy. However, it can be argued that the variance of SNR is substantially smaller than the
square of the mean SNR, justifying the above approximation.

V. Numerical Results

In this section, we will provide some numerical results to shed light on the performance of a heterodyne
PPM receiver. For the case of interest, we use M = 256. Also, to gain insight into the achievable
performance in the absence of turbulence, we first consider the case when Ac = Ad (that is, the received
field remains coherent over the entire receiver aperture). In this analysis, we are interested in symbol-error
rates in the range of 10−3 to 10−2, which is shown in Fig. 1. In this figure, the performance is depicted
as a function of

SNR = αa2
sE

{
|Il,d|2

}
Tc =

αa2
sAcTc

1 + 2αN0b

which in the absence of turbulence reduces to

SNR =
αa2

sAdTc

1 + 2αN0b
=

αPsTc

1 + 2αN0b
=

αEs

1 + 2αN0b

Therefore, the average SNR in heterodyne systems may be viewed as the average number of recovered
photons per PPM slot divided by the number of photons collected in the same time slot due to background
radiation. Notice that the effect of atmospheric turbulence is to reduce the useful number of photons
per slot, and, hence, to compromise the performance of the receiver. For this reason, the above may be
viewed as the lower bound on the number of received photons required to achieve a given performance
level. From Fig. 1, it can be seen that an SNR of 12.4 dB is needed to achieve a symbol-error rate
of 10−2 in the absence of background radiation. This number increases to 13.6 dB for a symbol-error
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Fig. 1.  Performance of the heterodyne 256-ary PPM receiver.

rate of 10−3. To go any further, one must specify the operating laser frequency and the quantum
efficiency of the photodetector. We consider an operating wavelength of 532 nm, which leads to fc =
(3× 108)/(532× 10−9) = 5.6× 1014 Hz. Furthermore, the quantum efficiency of the detector can take on
a value of 0.3 for germanium detectors operating at a wavelength of 532 nm. This number is reduced to
about 0.15 for silicon detectors. Assuming, then, that a germanium detector is used and that background
noise is absent, one requires 58 received photons per PPM slot to achieve a symbol-error rate of 10−2

(this number takes into account the loss due to quantum efficiency of less than 1). For a symbol-error
rate of 10−3 and when background noise is absent, one requires 76 photons. Note that these numbers
have been obtained assuming a negligible background radiation and when the atmospheric turbulence is
considered negligible. If background radiation is present, it impacts the required number of signal photons
adversely. Note that αN0b = η(N0b/hfc) = ηNbn may be regarded as the average number of photons
that are detected over a PPM slot due to background radiation, with Nbn denoting the average number
of received background photons. The factor of 2 in the denominator of the SNR described above is due
to the squaring operation of the photodetector.

For a symbol-error rate of 10−2, then, we can compute the required number of received photons for
various levels of background radiation. The resulting numbers may be compared with those of an APD-
based, direct-detection receiver for PPM. In a recent study ([5], Figs. 9 and 10), an upper bound on the
number of received photons required to achieve a given performance was computed as a function of the
background radiation level. In Table 1, the required number of signal photons is given for various levels
of background radiation for a germanium-type detector when an error rate of 10−2 is of interest. From
Table 1, it immediately becomes obvious that, when background noise cannot be ignored, the heterodyne
detection performs poorly as compared with its APD-based detection mechanism. It also is important
to note that the numbers for the APD-based receiver have been obtained when thermal noise is present
(the receiver is operating at room temperature). A similar calculation also can be made for an error rate
of 10−3 and is provided in Table 2.

Once again, our earlier observation is reaffirmed. First, it is quite obvious that the APD-based detection
is superior in performance across the board to that of the heterodyne detection considered here. In fact,
in the absence of background radiation, the APD-based detector maintains its superiority.
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Table 1. The upper bound on the required number of photons per
PPM slot for APD-based receivers and the required number of pho-
tons per PPM slot for heterodyne receivers with a symbol-error rate
of 10–2.

Upper bound on the
Required number of

required number of
signal photons

Nbn signal photons
per PPM slot

per PPM slot
(heterodyne)

(direct detection)

0 58 43

20 406 60

40 754 75

100 1798 115

200 3538 120

Table 2. The upper bound on the required number of photons per
PPM slot for APD-based receivers and the required number of pho-
tons per PPM slot for heterodyne receivers with a symbol-error rate
of 10–3.

Upper bound on the
Required number of

required number of
signal photons

Nbn signal photons
per PPM slot

per PPM slot
(heterodyne)

(direct detection)

0 76 52

20 532 77

40 988 90

100 2356 125

200 4636 150

Furthermore, the phase of the local laser, as well as that of the transmitter laser, is assumed to be
relatively constant over a PPM slot. As noted earlier, if this condition is violated, there will be further
degradation in performance. Moreover, in the event that atmospheric turbulence is present, one can
expect a larger number of photons required to achieve the above performance.

In view of the above observations, one can conclude readily that when synchronous detection is not
feasible in a heterodyne-type optical receiver and when PPM modulation is used, an APD-based direct-
detection receiver yields a performance superior to that of its heterodyne counterpart. It also is imperative
to note that a heterodyne receiver requires a number of additional circuitry to function properly. These
include a (stable) local laser and additional circuitry to perform polarization matching and other necessary
functions that are unique to heterodyne detection. Provided that the proposed system is intended for
deployment in space, it is highly unlikely that one can achieve the necessary phase stability to perform
the asynchronous detection described above when high-power lasers are employed. In the event that such
stability can be achieved, and background noise can be ignored, the performance of the asynchronous
heterodyne receiver remains inferior, as seen above, to that of its ADP-based counterpart.
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